Binbin Yu 1†Jing Wen 1,4,*†Lei Chen 1Leihong Zhang 1[ ... ]Dawei Zhang 1,3,5,*
Author Affiliations
Abstract
1 Engineering Research Center of Optical Instrument and Systems, Ministry of Education and Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
2 Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
3 Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
4 e-mail: jwen@usst.edu.cn
5 e-mail: dwzhang@usst.edu.cn
Airy optical beams have emerged to hold enormous theoretical and experimental research interest due to their outstanding characteristics. Conventional approaches suffer from bulky and costly systems, as well as poor phase discretization. The newly developed metasurface-based Airy beam generators have constraints of polarization dependence or limited generation efficiency. Here, we experimentally demonstrate a polarization-independent silicon dielectric metasurface for generation of high-efficiency Airy optical beams. In our implementation, rather than synchronous manipulation of the amplitude and phase by plasmonic or Huygens’ metasurfaces, we employ and impose a 3/2 phase-only manipulation to the dielectric metasurface, consisting of an array of silicon nanopillars with an optimized transmission efficiency as high as 97%. The resultant Airy optical beams possess extraordinarily large deflection angles and relatively narrow beam widths. Our validated scheme will open up a fascinating doorway to broaden the application scenarios of Airy optical beams on ultracompact photonic platforms.
Photonics Research
2020, 8(7): 07001148
Author Affiliations
Abstract
1 Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Sud, Université Paris-Saclay, C2N—Avenue de la Vauve, 91220 Palaiseau cedex, France
2 Université Paris Lumières, Univ Paris Nanterre, 92410 Ville d’Avray, France
In this paper, we report an experimental demonstration of enabling technology exploiting resonant properties of plasmonic nanoparticles, for the realization of wavelength-sensitive ultra-minituarized (4 μm×4 μm) optical metadevices. To this end, the example of a 1.3/1.6 μm wavelength demultiplexer is considered. Its technological implementation is based on the integration of gold cut-wire-based metalines on the top of a silicon-on-insulator waveguide. The plasmonic metalines modify locally the effective index of the Si waveguide and thus allow for the implementation of wavelength-dependent optical pathways. The 1.3/1.6 μm wavelength separation with extinction ratio between two demultiplexers’ channels reaching up to 20 dB is experimentally demonstrated. The considered approach, which can be readily adapted to different types of material planar lightwave circuit platforms and nanoresonators, is suited for the implementation of a generic family of wavelength-sensitive guided-wave optical metadevices.
Photonics Research
2019, 7(3): 03000359

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!